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Abstract

This paper investigates how the distribution of inflation expectations influences realized
inflation across its entire distribution. We find that shocks to median inflation expecta-
tions increase the median inflation rate for up to three years, and subsequently generate
persistent upside risks in inflation that endure for more than six years. By analyzing
higher-order moments; specifically, the standard deviation and skewness of inflation ex-
pectations, we show that greater disagreement among agents has distinct impacts on the
distribution of the inflation rate. While an increase in the standard deviation amplifies
right-tail inflation risks and generates quantile-dependent effects at the 90th percentile of
the inflation distribution, a negative skewness shock temporarily shifts the distribution
without any quantile-dependent effects. Our results highlight the critical importance of
the distributional properties of inflation expectations for understanding and managing
inflation risks. The results also underscore the need for well-anchored expectations to
promote macroeconomic price stability.
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1 Introduction

The global inflation surge of 2021–2023, the most synchronized and persistent uptick in price

pressures since the 1970s, has reignited the debate about the mechanisms linking inflation

expectations to realized inflation (Aastveit et al., 2024; Acharya et al., 2023; Adams & Bar-

rett, 2024; Beaudry et al., 2024; Reis, 2020, 2023a, 2023b; Werning, 2022). Recent work

by Coibion and Gorodnichenko (2025) highlights elevated and unanchored inflation expecta-

tions and the dangers that this may pose for monetary policy. While conventional wisdom

holds that inflation expectations significantly influence inflation outcomes, the precise nature

of this relationship, particularly how the entire distribution of expectations rather than just

mean expectations affects inflation dynamics, remains incompletely understood. This paper

contributes to this critical area of research by examining how both the central tendency and

higher-order moments of inflation expectations distributions shape realized inflation across

different quantiles. Our analysis employs quantile methods to capture potentially asymmetric

effects and tail risks that standard mean-based approaches might overlook. This methodolog-

ical approach is particularly relevant given the recent volatility in inflation observed globally,

and the increasing importance of understanding the risks of the inflation tail for effective policy

implementation. By documenting how heterogeneity in inflation expectations translates into

asymmetric inflation outcomes, our findings offer valuable insights for monetary policymakers

seeking to maintain price stability in an increasingly complex economic environment.

Recent empirical research has established that inflation expectations play a crucial role in

driving inflation dynamics, with particularly compelling evidence emerging from the post-

pandemic period. Using a structural vector autoregression model, Aastveit et al. (2024)

examine the drivers of the recent inflation surge and highlight how inflation expectations

significantly exacerbated inflation by amplifying the effects of global demand and supply

shocks in the US, Canada, and New Zealand. Similarly, Beaudry et al. (2024) document the

dominant role of inflation expectations in recent U.S. inflation dynamics through a Phillips

curve framework. Reis (2023a) explores multiple hypotheses for the pandemic-era inflation

surge, including the potential disregard of inflation expectations data by policymakers. Re-

lated research also identifies the discrepancy between market prices and long-term inflation

expectations from surveys as a key driver of business cycle fluctuations (Reis, 2020).
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Examining the pre-COVID literature reveals that while both the New Keynesian Phillips

Curve (NKPC) and the hybrid NKPC frameworks theorize that inflation is a function of

inflation expectations and economic slack, the empirical evidence quantifying the importance

of expectations remains mixed. Hybrid NKPC models such as Gali et al. (2005) and Gali

and Gertler (1999) found that the coefficient on inflation expectations significantly exceeds

that on lagged inflation, a result echoed by Basistha and Nelson (2007) using forward-looking

NKPC specifications. Contrasting perspectives emerge from Rudd (2022), who questions the

fundamental relevance of inflation expectations in driving inflation dynamics, and Adams and

Barrett (2024), who demonstrate that positive shocks to inflation expectations, defined as the

gap between agents’ expectations and the mathematical conditional expectation of inflation,

can paradoxically lead to decreased inflation.

Recent evidence increasingly points to time variation and nonlinearity in the relationship

between inflation expectations and realized inflation (Chang et al., 2022; Panovska & Rama-

murthy, 2022). Lopez-Salido and Loria (2024) have documented that while inflation expecta-

tions symmetrically influence inflation across its distribution, other factors such as financial

conditions, labor market slack, and oil price inflation contribute to asymmetry in the tails.

Furthermore, an expanding body of research demonstrates that inflation outcomes are shaped

not only by central tendency measures of household inflation expectations but also by the dis-

agreement within these expectations—effectively, the higher-order moments of the household

inflation expectations distribution. Research by Ahn and Farmer (2024) and Fofana et al.

(2024) reveals that such disagreement is formed through prior beliefs, information processing,

and demographic factors, and responds dynamically to macroeconomic shocks.

Motivated by this compelling evidence of nonlinearity and the growing literature examining

inflation risks across both the left and right tails of the distribution, we adopt a quantile

vector autoregression model (QVAR) to comprehensively analyze how inflation expectations

and expectations disagreement transmit to realized inflation across different quantiles. This

methodological approach allows us to capture potential asymmetries and nonlinearities that

might be obscured in traditional mean-based estimation techniques, thereby providing a more

nuanced understanding of the inflation expectations transmission mechanism.

Overall, our results provide evidence that the distribution of inflation expectations has im-
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portant consequences for the distribution of the actual inflation rate. Specifically, a shock to

the median inflation expectations increases the median inflation rate for up to three years fol-

lowing the shock. However, when examining the whole distributional response of the inflation

rate after the shock, we observe a significant and persistent upside risk that remains for more

than six years.

To assess the significance of these asymmetries, we conducted bootstrap analyses (where the

evidence supported rejecting the null hypothesis of quantile independence), long-run analyses,

and a series of robustness checks using both pre- and post-COVID data, as well as quarterly

and monthly data. We further investigate how higher-order moments of inflation expectations

affect the distribution of the inflation rate, utilizing the residualized standard deviation and

skewness of inflation expectations as in Fofana et al. (2024). Our findings indicate that an

increase in the standard deviation generates only a right-tail asymmetric risk in the actual

inflation rate. In contrast, a negative shock to skewness—meaning fewer values in the left

tail and more data clustered toward higher values (shifting the median leftward)—shifts the

location of the inflation rate distribution for about one year after the shock, subsequently

mildly increasing the right tail of the distribution.

In summary, our results provide compelling evidence that the distribution of inflation expec-

tations has significant effects on the upside risk of inflation. This underscores the importance

of well-anchored inflation expectations for maintaining the stability of future inflation rates.

The rest of this paper is structured as follows. Section 2 presents the methodology and data.

Section 3 reports the findings. Section 4 provides further robustness checks. Section 5 provides

some concluding remarks.

2 Methodology and Data

In this section, we present the econometric methods employed to analyze how shocks to

inflation expectations—and its disagreement—affect the distribution of realized inflation rates.

We also provide a detailed description of the data used in our analysis.
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2.1 Methodology

Quantile vector autoregressive models (QVAR) are built upon quantile regressions, a concept

which was introduced by Koenker and Bassett Jr (1978).1 Although quantile regression has a

long tradition in economics, its application to univariate time series is somewhat more recent

with seminal contributions from Engle and Manganelli (2004) and Koenker and Xiao (2006).

In the multivariate context, White et al. (2015) first introduced a reduced form estimation

technique for QVAR models. Multivariate reduced form models however suffer from identi-

fication problems which seem to be more serious than in mean-based OLS estimation given

that the law of iterated expectation does not hold in conditional quantiles.

The fundamental challenge in developing quantile vector autoregressive models lies in extend-

ing the concept of quantiles to higher dimensions, where no natural ordering exists (Wei, 2008).

Several independent approaches have emerged to define and estimate multivariate quantile

impulse responses. In the context of structural vector autoregressive models (SVARs), to

our knowledge, two main methodological streams have developed. The first, represented by

Montes-Rojas (2017, 2019, 2022), employs the multivariate directional quantile framework

developed by Hallin et al. (2010), where quantiles are well-defined once a specific direction

is chosen. The second approach, introduced by Chavleishvili and Manganelli (2024), imple-

ments a recursive identification strategy that decomposes any distribution into a product

of marginal and univariate conditional distributions, building upon Wei (2008). This paper

adopts the latter approach. In the recursive approach of Chavleishvili and Manganelli (2024),

each quantile is estimated conditional on both the lagged variables and the contemporaneous

variables from previously estimated equations. More formally, consider a vector of observed

random variables Yt = (y1,t, . . . , yK,t)
′ and a set of independent and identically distributed

(iid) standard uniform random variables Ut = {ui,t} for i = 1, . . . ,K. The random parameters

SVAR(p) model can be written as:

Yt = ω(Ut) +A0(Ut)Yt +

p∑
j=1

Aj(Ut)Yt−j (1)

where ω(Ut) is a K × 1 vector and Aj(Ut) is a K ×K matrix for j = 1, . . . ,K of parameters.

The matrix A0(Ut) is a K × K lower triangular matrix representing the assumed recursive

1For more in-depth presentation on the quantile regression methodology see Koenker (2005, 2017)
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identification. When Yt is monotonically increasing in Ut, the τi–quantile function can be

defined based on Equation (1) as:

Qyi,t(τi|Zi,t) = Z ′
i,tβi(τi) (2)

where Zi,t is the conformable information set and βi(τi) is a matrix containing all the param-

eters in model (1) (Koenker & Xiao, 2006). Estimation is carried out by minimizing the check

function equation by equation following Koenker and Park (1996).

The structural impulse responses are obtained using the approach introduced by Chavleishvili

and Manganelli (2024). Using the random coefficient representation of the quantile regression

model as in (1), we can define the reduced form model as:

Yt = v +

p∑
j=1

Bj(Ut)Yt−j + ϵ(Ut) (3)

where the reduced form error is given by ϵ(Ut) = v(Ut) − v, v = E[v(Ut)], v(Ut) = [IK −

A0(Ut)]
−1ω(Ut), and Bj(Ut) = [IK −A0(Ut)]

−1Aj(Ut) for j = 1, . . . , p. The structural shocks

can then be defined as:

Cε(Ut) = ϵ(Ut), ε(Ut) ∼ (0, IK) (4)

where matrix C must be estimated through simulation by assuming a short-run Cholesky

identification, i.e.,

Σϵ = E[ϵ(Ut)ϵ(Ut)
′] = C ′C (5)

The impulse response function can then be calculated by assuming that a shock of size δ = 1

is changing the location of the whole distribution as:

ε∗(Ut) = ε(Ut) + δι (6)

where ι is K × 1 vector of zeros with a 1 in the position corresponding to the desired shocked
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variable. Therefore, the quantile impulse response function (QIRF) for h = 0 is given by:

QIRF0(U0, δ) = Y ∗
0 − Y0 (7)

= Cδι

where Y ∗
0 represents the shocked variable. For the following periods, h = 1, . . . ,H − 1, the

QIRF can be obtained by iterating over Equation (3).

Based on these estimates, we compute the distributional QIRF (DQIRF) and the long-term

impact coefficient to analyze how the distribution of inflation expectations, specifically its

median, standard deviation, and skewness, affect the realized inflation rate. The DQIRF

captures the dynamic response of the entire inflation rate distribution following a shock to

inflation expectations. To operationalize this, we employ Algorithm 1 outlined in Montes-

Rojas (2022) for estimating distributional responses.2

Algorithm 1

Consider the QIRF for h = 0, . . . ,H − 1 by using B simulations, given the shock of size δ.
• For a finite grid of quantiles 0 < τ1 < τ2 < · · · < τN . Construct and store the parameters
matrices in Equation (1).

• Repeat the following steps for b = 1, . . . , B:
1. Randomly draw τ0 = (τ1, . . . , τK)′ from the sequence stored above. Compute the

QIRF0(τ0, δ). Define u(0) = τ0.
2. For h = 1, . . . ,H − 1 randomly draw τh from the sequence stored above. Compute

the QIRFh(τh, δ). Define u(h) = [τh−1, τh].
3. Save QIRF(b) = [QIRF0, . . . ,QIRFH−1].

• The collection [QIRF(1), . . . ,QIRF(B)] are used to evaluate the distribution of the IRF
at any horizon h = 0, . . . ,H − 1.

The long-run impact coefficients for the inflation rate equation help us to determine whether

the moments of inflation expectations influence tail risks in the actual inflation rate in the long

run. To conduct inference on these coefficients, we employ the quantile bootstrap algorithm

described in Chavleishvili and Manganelli (2024), referred to as Algorithm 2.

2.2 Data

The empirical analysis employs quarterly U.S. macroeconomic data spanning from 1960Q1

to 2024Q2, incorporating 2 lags in the estimation. The baseline model consists of five key

2We also carry surrogate methods to test our DQIRFs results against the null of quantile independence
(described in detail in Section 3.1).

7



Algorithm 2

1. For a finite grid of quantiles 0 < τ1 < τ2 < · · · < τN < 1. Construct and store the
parameters matrices in Equation (1). Construct estimates of the conditional quantiles
function Q̂yi,t(τj |Zi,t) for each equation i = 1, . . . ,K and quantile j = 1, . . . , N .

2. For each p < t ≤ T and equation i = 1, . . . ,K, find τj from the grid that minimizes the
distance |yi,t − Q̂yi,t(τj |Zi,t)|. Collect and store these values as {τt}Tt=p+1.

3. For b = 1, . . . , B: Draw independently
{
u
(b)
t

}T

t=p+1
from the sequence stored quantiles

in {τt}Tt=p+1 and generate the bootstrap sample recursively following Equation (1).
4. The collection of bootstrap samples are used to perform inference.

variables: price index for energy goods and services (DNRGRG3M086SBEA), the output gap

which is measured as the percentage deviation of real GDP (GDPC1) relative to real potential

GDP from the Congressional Budget Office (GDPPOT), one-year ahead inflation expectations

from the University of Michigan Survey of Consumers, the Personal Consumption Price Index

(PCEPI) inflation rate, and the 3-month Treasury Bill (DTB3), downloaded from the Federal

Reserve Economic Data Base (FRED).3 Figure 1 plots the time series used in the baseline

model. As a robustness check, in Section 4 we also present the results from QVAR analyses

using quarterly data for the pre-COVID sample, and the results when we use monthly data

for both the full and the pre-COVID samples.

The identification strategy relies on recursive ordering restrictions, with variables ordered as

described above. First, following Kilian and Zhou (2022, 2023), we treat the price index for

energy goods and services as the most contemporaneously exogenous variable in the system.

Second, in line with Beaudry et al. (2024), we assume that the output gap affects both inflation

expectations and realized inflation contemporaneously. Third, although the contemporaneous

relationship between inflation expectations and the inflation rate remains debated, we adopt

the view in Beaudry et al. (2024), which suggests that inflation expectations adjust more

slowly to inflation surprises within a quarter. This also parallels the findings of Kocherlakota

(2016) who finds that expectations respond sluggishly.4 Accordingly, inflation expectations

are ordered before the actual inflation rate. Finally, the interest rate is placed last in the

ordering, reflecting the assumption that the Federal Reserve responds contemporaneously to

3Energy price inflation, output gap, and the inflation rate are measured as annualized percentage change.
4However, as a robustness check, we also reversed the ordering by placing the inflation rate before inflation

expectations. The results indicate that inflation exhibits a weaker response to shocks in inflation expectations
under this alternative ordering. Nevertheless, the key qualitative finding persists: the impulse response con-
tinues to display pronounced excess skewness relative to a standard SVAR framework, thereby underscoring
the robustness of the main results. The results with this alternative ordering are available on request.
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current economic conditions but does not influence the other variables within the same period.
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Figure 1: Quarterly time series dataset This figure shows the quarterly time series for
the energy prices, output gap, inflation expectations, inflation, and interest rate from 1960Q1
to 2024Q2.

3 Results

In this section, we present the main results of the study. First, we provide evidence that

an increase in median inflation expectations has an asymmetric effect on the distribution

of the realized inflation rate. Second, we use the residualized median, standard deviation,

and skewness of inflation expectations to: (1) verify that our findings are robust to shocks

in the residualized median, and (2) demonstrate that different measures of disagreement in

inflation expectations and the different moments of the expectation distribution have distinct

implications for the realized inflation rate.5

5Following Fofana et al. (2024), we construct residualized measures of inflation expectations by using the
University of Michigan inflation expectations survey and removing the influence of observable characteristics
such as demographic, social, and economic factors from raw inflation expectations. Further details are provided
in Subsection 3.2.
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3.1 Distributional effects of a median inflation expectation shock

We first examine the impact of a one standard deviation shock to median inflation expectations

on the inflation rate. The main findings, illustrated in Figure 2 and derived using Algorithm

1,6 indicate that a shock to median expected inflation leads to a significant increase in mean

inflation for up to three years before gradually returning to baseline levels. However, the

distributional impulse response analysis highlights a notable and persistent upside risk in

inflation’s upper quantiles, which remains relevant for more than six years after the shock.

These results are consistent with the finding in Lopez-Salido and Loria (2024) who find that

both in the U.S. and the Euro area, inflation expectations have been the decisive inflation

determinant over the last 20 years. These results underscore the inflationary risks associated

with unanchored median inflation expectations and emphasize the importance of maintaining

well-anchored expectations for effective monetary policy.

To formally evaluate whether the skewness of the estimated DQIRFs in Figure 2 is significant,

we carry out a surrogate exercise. We first estimate an SVAR based on the data using

the identification assumptions introduced in the previous section. Then, we simulate M =

1, 000 linea SVARs using the estimated coefficients from a linear model, each of size T =

400, discarding the first 100 observations to approximately match our sample size. Then

we estimate a QVAR model for each of the M realizations from the simulated linear SVARs

(that by construction do not have any quantile dependence). Finally, we calculate the DQIRF

from these models and calculate the skewness for each horizon to set the null hypothesis.

The bootstrap comparison in Table 1 reveals that the observed skewness values exceed the

surrogate distribution for horizons beyond 12 quarters, confirming the asymmetry of the

responses is statistically significant. As expected, the DQIRF from our data set show strong

positive skewness over longer horizons.

To further investigate the effect of median inflation expectations on the inflation rate, we use

two approaches: (i) estimating the long-run coefficients for the inflation rate equation (see

Equation (10) below), and (ii) calculating the cumulative (impulse) response of the inflation

rate to a permanent 1 percentage point (pp) increase in inflation expectations at a 24-quarter

6Kernel density estimates were computed in MATLAB using the default normal (Gaussian) kernel and
automatic bandwidth selection, after excluding the 0.1% lower and upper outliers.
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Figure 2: Distributional QIRF This figure shows the distributional QIRF to the inflation
rate from a one standard deviation shock to the median inflation expectations. We carry out
the calculations using Algorithm 1.

Horizon Skewness from SVAR Skewness from data

4 0.1179 (0.5143) 0.1374
8 0.2579 (0.5675) 0.7274
12 0.4240 (0.6744) 1.6470
16 0.5482 (0.8150) 2.8796
20 0.6130 (0.9985) 4.6782
24 0.6514 (1.2491) 7.3946

Table 1: Surrogate skewness This table shows the results from skewness from an SVAR
simulation. The columns show the response horizon, mean and standard error (in parenthesis)
from the SVAR surrogate, and skewness from data; respectively.

horizon. These two sets long-run parameters and responses help us understand whether the

inflation rate has an asymmetric response to inflation expectations and, therefore, if inflation

expectations can exert tail risk on the inflation rate. To calculate the long-run parameter for

the inflation rate equation, we use the random parameter VAR(p) representation in Equation

(1) and the algorithm for inference in Algorithm 2. With this approach, we can obtain

the (possibly) quantile-dependent long-run reaction of the inflation rate distribution to a

1pp increase in the median annual inflation expectations. Under a linear VAR assumption,

i.e., when the parameters are quantile-independent, the long-run parameter associated with

inflation expectations should have an equal effect across the entire distribution.7

7Quantile-invariance in the long-run effect can be seen in Equation (1) when ω(Ut) = ω, A0(Ut) = A0, and
Aj(Ut) = Aj for j = 1, . . . ,K.
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We calculated the long-run parameter from the inflation equation as follows. Equation (8)

represents the SVAR model for the τ -quantile (excluding constants and error terms).



1 0 0 0 0

a21,τ 1 0 0 0

a31,τ a32,τ 1 0 0

a41,τ a42,τ a43,τ 1 0

a51,τ a52,τ a53,τ a54,τ 1


︸ ︷︷ ︸

A0(τ)



Πene
t

Ỹt

Πexp
t

Πt

Rt


︸ ︷︷ ︸

Yt

=



b11,τ (L) b12,τ (L) b13,τ (L) b14,τ (L) b15,τ (L)

b21,τ (L) b22,τ (L) b23,τ (L) b24,τ (L) b25,τ (L)

b31,τ (L) b32,τ (L) b33,τ (L) b34,τ (L) b35,τ (L)

b41,τ (L) b42,τ (L) b43,τ (L) b44,τ (L) b45,τ (L)

b51,τ (L) b52,τ (L) b53,τ (L) b54,τ (L) b55,τ (L)


︸ ︷︷ ︸

Bτ (L)



Πene
t

Ỹt

Πexp
t

Πt

Rt


︸ ︷︷ ︸

Yt

(8)

where Πene
t , Ỹt, Π

exp
t , Πt, Rt represent the energy inflation, output gap, inflation expectations,

realized inflation rate, and interest rate, respectively. Further, A0(τ) represents the τ -quantile

impact matrix of coefficients and Bτ (L) the τ -quantile matrix of coefficients with L as the lag

operator. From the fourth row of Equation (8), it follows that

a41,τΠ
ene
t + a42,τ Ỹt + a43,τΠ

exp
t +Πt

= b41,τ (L)Π
ene
t + b42,τ (L)Ỹt + b43,τ (L)Π

exp
t + b44,τ (L)Πt + b45,τ (L)Rt (9)

Solving for the inflation rate Πt and setting L = 1, we find that

[1− b44,τ (1)]Πt = −a41,τΠ
ene
t − a42,τ Ỹt − a43,τΠ

exp
t

+b41,τ (1)Π
ene
t + b42,τ (1)Ỹt + b43,τ (1)Π

exp
t + b45,τ (1)Rt (10)

The long-run effect from a 1pp increase in the inflation expectations Πexp
t to the inflation rate

Πt can be calculated by computing the following coefficient [−a43,τ + b43,τ (1)]/[1− b44,τ (1)].
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Table 2 presents the long-run responses for the quantiles τ = 0.10, 0.25, 0.50, 0.75, 0.90 across

the columns. Each row displays the point estimates and their corresponding 68% confidence

intervals. The last row reports the cumulative quantile impulse response.

The results indicate that as the quantile of interest, τ , increases, the long-term response also

rises, and expectations have a larger effect and higher quantiles.8 The last row of Table 2 also

shows the cumulative IRF for different quantiles, which represents the response of inflation

rate to a permanent 1pp increase in the annual inflation expectations. Overall, both sets of

results in the table show that there are higher upside risks from inflation expectations to the

distribution of the inflation rate.

τ

π 10% 25% 50% 75% 90%

16% 0.6070 0.5931 0.7045 0.7478 0.7545
50% 0.7254 0.7484 0.8555 0.9231 0.9236
84% 0.8360 0.8898 0.9924 1.0869 1.0873
Point Estimate 0.6854 0.7293 0.8752 0.9516 0.9543

Cumulative IRF 0.8242 1.4060 2.5398 4.4618 7.4357

Table 2: Long-run inflation Rows one to four shows the results for the long-run response
from the inflation rate equation to a shock to the median annual inflation expectations in 1pp.
Inference is provided using Algorithm 2. The last row shows the cumulative impulse response
from a permanent 1pp shock to inflation expectations at quarter 24.

3.2 Shocks to higher-order moments of inflation expectations

The literature on inflation expectations has largely emphasized the importance of central ten-

dencies, such as the median or mean values, in determining inflation rates. Our study extends

this type of analysis by incorporating residualized higher-order moments of the distribution

of inflation expectations, as proposed by Fofana et al. (2024). Their methodology focuses on

removing observable characteristics such as demographic, social, and economic factors from

inflation expectations to isolate residual disagreement. This residual disagreement is then

captured through statistical measures such as the standard deviation and skewness, which

reflect the dispersion and asymmetry in expectations across households. By focusing on these

residualized higher-order moments, our results provide deeper insights into the dynamics of

8Additionally, we applied Algorithm 2 to simulated VAR models using the same data. As expected, the
results showed that the long-run response is independent of the quantile.
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inflation expectations disagreement that are not captured by conventional metrics.

Using data from the Michigan Survey of Consumers (MSC), we adopt the Fofana et al.

(2024) residualization framework to replace conventional median inflation expectations with

residualized higher-order moments (standard deviation and skewness) in our QVAR model.

We compute the QIRFs to analyze how shocks propagate through the distribution of inflation

expectations. Crucially, these residualized disagreement measures are time-varying, enabling

us to explore how shocks to the higher moments of inflation expectations—rather than central

tendencies—affect actual inflation dynamics.

Figure 3 plots the time series for the residualized median, standard deviation, and skewness

derived from the survey data. To begin our analysis, Figure 4 examines the effects of a shock

to the residual median inflation expectations. The results closely align with those presented

in Figure 2, thereby serving as a robustness check for our earlier findings. As emphasized

before, a shock to median inflation expectations leads to an upside risk for the inflation rate.

Figure 3: Higher order moments time series Quarterly time series of residualized higher
order moments of the inflation expectations distribution, 1978Q1 to 2024Q2.

Second, a positive shock to the residual standard deviation, as shown in Figure 5a, increases
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only the risk of higher inflation rates on the QIRF distribution up to approximately one year

after the shock occurs. The standard deviation (along with the interquartile range) is often

used as a proxy for disagreement when it comes to inflation expectations. Interestingly, the

response of inflation to a shock in the residual standard deviation resembles its response to a

shock in the median inflation expectations after a year, although to a lesser degree.
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Figure 4: Distributional QIRF for residualized median This figure shows the distri-
butional QIRF to the inflation rate from a one standard deviation shock to the residualized
median inflation expectations. We carry out the calculations using Algorithm 1.
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(a) Standard Deviation
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(b) Skewness

Figure 5: Distributional QIRF for higher order moments This figure shows the distri-
butional QIRF over inflation rate from a one standard deviation positive shock to residual
standard deviation and a one standard deviation negative shock to the residual skewness of
the inflation expectations distribution. We carry out the calculations using Algorithm 1.

Next, we explore a negative shock to skewness meaning that fewer values are at the left tail

of the distribution leaving most data clustered toward higher values. Interestingly, in this

case, the median would move to the left. Figure 5b shows our results, which indicate that a
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decrease in skewness affects the inflation rate positively after a year, increasing it by almost

0.5 percentage points. This goes in the opposite direction of the same effect of a decrease of

the median in Figure 4. After a year, over the medium run, the effect on inflation converges to

a distribution with a higher left tail, but with a non-negligible risk of an increase in inflation

in the right tail.

τ

π 10% 25% 50% 75% 90%

16% 0.4528 0.5072 0.6695 0.7139 0.7288
50% 0.7602 0.7964 0.9193 0.9165 1.0154
84% 0.9998 1.0315 1.1138 1.1010 1.2717
Point Estimate 0.8205 0.9484 0.9202 1.1045 1.4472

Cumulative IRF 0.5533 0.8496 1.3968 2.6043 5.3865

Table 3: Long-run inflation from residualized median inflation expectations Rows
one to four shows the results for the long-run response from the inflation rate equation to
a shock to the residualized median annual inflation expectations in 1 percentage point (pp).
Inference is provided using Algorithm 2. The last row shows the cumulative impulse response
from a permanent 1pp shock to the residualized inflation expectations at quarter 24.

τ

π 10% 25% 50% 75% 90%

16% -1.0517 -0.8381 -0.6736 -0.3240 0.6123
50% -0.0311 0.1638 0.2969 0.4822 1.3236
84% 0.6707 0.8605 0.9828 1.1512 2.0659
Point Estimate 0.3937 -0.0566 0.0004 2.0006 1.6422

Cumulative IRF -0.5551 -0.2046 0.2295 1.2439 3.1818

Table 4: Long-run inflation from residualized standard deviation of inflation ex-
pectations Rows one to four shows the results for the long-run response from the inflation
rate equation to a shock to the residualized standard deviation in 1 unit. Inference is provided
using Algorithm 2. The last row shows the cumulative impulse response from a permanent 1
unit shock to the residualized standard deviation in inflation expectations at quarter 24.

Our findings contribute to the literature on expectation disagreement and inflation dynamics

(Mankiw et al., 2003) and demonstrate that different measures of disagreement play a critical

role in understanding their effects on the distribution of actual future inflation rates. The

QIRF in Figure 5 reveals distinct mechanisms: while a shock to the standard deviation, which

can be used as a proxy for expectation disagreement, primarily induces rightward skewness in

the distribution (similar to the median shock). A negative skewness shock exerts a transitory

upward location shift on inflation up to one year. Beyond this horizon, the distributional
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impacts of skewness shocks become less significant. Interestingly, the long-run effects of these

shocks diverge: while the impacts of the shocks to the standard deviation remain significant

at extremely upper quantiles (τ = 0.9), the effects of shocks to the skewness dissipate in the

long run, i.e., they are quantile independent. Tables 3, 4, and 5 summarize these findings. For

instance, the results for the residual median in Table 3 largely align with our earlier results.

However, increases in the residual standard deviation, as shown in Table 4, exhibit significant

effects only in the long run for the 90% quantile. In contrast, evidence from Table 5 suggests

that residual skewness has no significant quantile dependent effect over the longer run.

τ

π 10% 25% 50% 75% 90%

16% -0.8172 -0.9557 -1.1695 -0.9907 -2.4422
50% 0.0297 -0.1189 -0.0508 -0.0405 -1.0869
84% 1.1271 1.0007 1.5085 1.2308 0.2269
Point Estimate -0.5271 0.3378 -0.0953 -0.8479 -3.4442

Cumulative IRF -2.7938 -0.8025 -0.2997 0.0583 0.4237

Table 5: Long-run inflation from residualized skewness of inflation expectations
Rows one to four shows the results for the long-run response from the inflation rate equation
to a shock to the residualized skewness in 1 unit. Inference is provided using Algorithm 2.
The last row shows the cumulative impulse response from a permanent 1 unit shock to the
skewness of inflation expectations at quarter 24.

4 Robustness

We conduct additional robustness checks to assess the impact of a shock to median inflation

expectations on the distribution of the actual inflation rate. First, to evaluate whether our

results were affected by the recent run up in inflation, we reestimate our model by using pre-

COVID quarterly data. Second, we employ comparable monthly data covering both the pre-

and post-COVID periods. The overall results were qualitatively and quantitatively similar to

our baseline results, and the corresponding figures and tables are presented below.

4.1 Quarterly results: Before COVID

Figure 6 presents the distributional impulse responses of the realized inflation to an one

standard deviation shock in median inflation expectations, using Algorithm 1 and quarterly

data from 1960Q1 to 2019Q1. The findings are consistent with the full-sample results, showing
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that a shock to median inflation expectations raises the realized inflation for up to four

years and reveals upside risks in the upper quantiles of the inflation distribution. The long-

run coefficients in Table 6 show similar findings, indicating that the long-run response of

inflation to a shock in inflation expectations increases with higher quantiles. Furthermore,

the magnitude and the shape of the responses presented in Figures 2 and 6 are very similar,

as are the long-run responses presented in Table 2 and 6, indicating that our results are not

driven by the inflation run up following 2020.
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Figure 6: Distributional QIRF This figure shows the distributional QIRF from a median
inflation expectations shock to the inflation rate using only pre-COVID data. We carry out
the calculations using Algorithm 1.

τ

π 10% 25% 50% 75% 90%

16% 0.6700 0.6881 0.7645 0.7782 0.7568
50% 0.7734 0.8261 0.8988 0.9326 0.9388
84% 0.8843 0.9612 1.0270 1.0837 1.1295
Point Estimate 0.6819 0.8076 0.9108 0.9396 0.9860

Cumulative IRF 0.8257 1.4300 2.5820 4.6620 7.6528

Table 6: Long-run inflation Rows one to four shows the results for the long-run response
from the inflation rate equation to a shock to the median annual inflation expectations in 1pp.
Inference is provided using Algorithm 2. The last row shows the cumulative impulse response
from a permanent 1pp shock to inflation expectations at quarter 24.
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4.2 Monthly data: Full sample

We also conduct monthly robustness checks to analyze the effect of inflation expectations on

inflation using data spanning from 1978M1 to 2024M6 for the full sample, with the pre-COVID

subsample ending at 2019M12. The estimation incorporates six lags. Similar to the QVAR

analysis with quarterly data, the monthly analysis includes five key variables: price index for

energy goods and services (DNRGRG3M086SBEA), industrial production (INDPRO) as a

proxy for economic activity, one-year-ahead inflation expectations (MICH) from the Univer-

sity of Michigan Survey of Consumers, the Personal Consumption Expenditures Price Index

(PCEPI) inflation rate, and the 3-month Treasury Bill rate (DTB3).9 Figure 7 presents the

corresponding time series. The identification strategy follows the same recursive ordering re-

strictions used in the quarterly analysis, with variables ordered as listed above. Distributional

quantile impulse responses (DQIRF) are in Figures 8 and 9. Also, the long-run results are

reported in Tables 7 and 8. The results again largely agree with our baseline findings; with

the exception of Table 8 where the maximum long-run response for the inflation equation, i.e.,

rows one to four, is attained at median quantile (τ = 0.5). However, it is important to note

that in this case there was substantial uncertainty associated with the responses at higher

quantiles, and the 68% confidence interval at τ = 90% was wide in this case.

9As with the quarterly data, energy price inflation, industrial production growth, and inflation rate are
measured as annualized percentage changes. Because there is no standardized benchmark for the long-run
potential level of industrial production, and different statistical assumptions about the trend behavior can
produce different estimates for the cyclical behavior of a variable (see, inter alia, Hamilton, 2018 or Morley
and Panovska, 2020. To avoid taking a stand about the nature of the trend of industrial production, we use
the growth rate of industrial production to control for the state of the business cycle. As shown in the two
subsequent subsections, the results obtained using this specification are quite similar to the quarterly results
that use the CBO output gap in the QVAR.
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Figure 7: Monthly time series dataset annualized This figure shows the monthly time
series for the energy prices, industrial production, inflation expectations, inflation, and interest
rate from 1978M1 to 2024M6.
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4.2.1 Monthly results: Full sample

Figure 8: Distributional QIRF This figure shows the distributional QIRF from a median
inflation expectations shock to the inflation rate. We carry out the calculations using Algo-
rithm 1.

τ

π 10% 25% 50% 75% 90%

16% 0.4832 0.4788 0.5239 0.4850 0.1639
50% 0.7806 0.7611 0.8023 0.8566 0.8250
84% 1.1562 1.1230 1.1341 1.3521 1.7998
Point Estimate 0.9120 0.7152 0.8513 0.8719 0.9106

Cumulative IRF 0.5129 0.9477 2.0696 3.7200 6.3252

Table 7: Long-run inflation Rows one to four shows the results for the long-run response
from the inflation rate equation to a shock to the expectation inflation in 1pp. Inference is
provided using Algorithm 2. The last row shows the cumulative impulse response from a
permanent 1pp shock to the inflation expectations at 72 months.
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4.2.2 Monthly results: Pre-Covid

Figure 9: Distributional QIRF This figure shows the distributional QIRF from a median
inflation expectations shock to the inflation rate. We carry out the calculations using Algo-
rithm 1.

τ

π 10% 25% 50% 75% 90%

16% 0.5741 0.5550 0.6255 0.5555 0.4849
50% 0.7485 0.7363 0.7901 0.7479 0.6874
84% 0.9488 0.9351 0.9771 0.9734 0.9237
Point Estimate 0.7499 0.6958 0.8671 0.7983 0.6513

Cumulative IRF 0.5302 0.8413 2.2311 3.7703 5.4034

Table 8: Long-run inflation Rows one to four shows the results for the long-run response
from the inflation rate equation to a shock to the expectation inflation in 1pp. Inference is
provided using Algorithm 2. The last row shows the cumulative impulse response from a
permanent 1pp shock to the inflation expectations at 72 months.

5 Conclusion

This study provides new evidence on how inflation expectations shape the entire distribution

of realized inflation rates. Our findings show that while shocks to the median of inflation

expectations lead to a significant but temporary increase in average inflation—lasting up to

three years—these shocks also generate a persistent upside risk in the upper tail of the inflation

distribution, with effects that endure for more than six years. Importantly, we find that higher-

order moments of the expectations distribution—specifically, dispersion (standard deviation)
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and skewness—play distinct roles in shaping inflation outcomes. A positive shock to the

standard deviation of expectations amplifies right-tail inflation risks, significantly increasing

inflation at higher quantiles, whereas a negative shock to skewness causes a temporary upward

shift in the median inflation rate without notable quantile-dependent effects. These results

highlight that different moments of the expectations distribution transmit to inflation in

asymmetric and nonlinear ways, which are not captured by conventional mean-based models.

Collectively, our findings underscore the importance for policymakers of monitoring not just

the central tendency but also the heterogeneity and asymmetry in inflation expectations, as de-

anchoring in higher-order moments can propagate persistent inflation risks even when median

expectations appear stable. Paralleling the findings of Coibion and Gorodnichenko (2025),

we also find that expectations play an important role, especially when inflation is elevated.

This distributional perspective offers valuable insights for the design of monetary policy,

particularly in periods of heightened macroeconomic uncertainty, and suggests that future

research should further explore how these effects evolve across different economic regimes.
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